
Journal of Hazardous Materials, 3 (1983) 157-183 i 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

157 

ON CRYOGENIC LIQUID POOL EVAPORATION 

N.O. JENSEN* 

CSIRO Divjeion of Environmental Mechanics, Canberra (Australia) 

(Received May 12,1983; accepted May 20.1983) 

summary 

In this paper we evaluate the rate of evaporation from two typical configurations of 
cryogenic liquid spills on a solid homogeneous surface. Only theoretical results are given, 
and the results are valid only when the liquid is boiling ss a result of heat transfer from 
the underlying ground surface. 

1. Introduction 

Various industrial gases are stored in liquified form, either’under high 
pressure and at ambient temperature or under less pressure and at lower 
temperatures. The first type of storage gives rise to quite spectacular releases 
during loss of containment, involving formation of large quantities of aerosol. 
Release in the latter type is more gentle, the main result being release of cold 
vapours (at boiling point, 1 atm) as a result of contact with the surface, 
which will normally be much warmer than the cryogenic liquid. The second 
type of storage is the subject of this paper. 

In the later stage of this type of release, the transfer of sensible heat from 
the air becomes important as the heat transfer from the soil becomes suffi- 
ciently low. This problem requires consideration of the structure of the 
turbulent air flow above the pool and is not considered in this paper. We 
further limit ourselves to cases in which the liquid is boiling, as this involves 
a simple relationship between the amount of vapour production and the 
magnitude of the heat flow from the ground. Thus, 

A i3T -_-- 
’ La& 

(1) 

where q is the rate of evaporation, L is the latent heat, X is the thermal con- 
ductivity of the homogeneous ground and a T/b is the vertical temperature 
gradient at the surface of the ground. In eqn. (1) we assume that the pool is 
large and “edge effects” can therefore be neglected. 
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The magnitude of a T/&z can be found by solving the heat-conduction 
equation using the boundary condition that the surface temperature instan- 
taneously decreases by the amount AT, the temperature difference between 
the ground and the cryogenic liquid. As we have restricted ourselves to cases 
where the liquid boils, AT is a constant. The solution to this classic problem, 
sometimes called Stokes’ 1st problem, is 

aT 
-=AT 5, 
a2 f 

(2) 

where p and c are the density and specific heat capacity of the soil, respec- 
tively, and t is the time since the temperature was changed. Combination of 
eqns. (1) and (2) gives 

where s = (A T/L)dm contains all the physical parameters in the problem. 
According to eqn. (3), the rate of evaporation decreases with the square root 
of time. Typical values (p = 2 X lo3 kg rne3, c = lo3 J kg-’ K-l, A = 1 W m-’ 
K-l, AT = 50 K, and L = 1000 kJ kg-‘) give an evaporation rate of 40 g me2 
divided by the square root of t in seconds. Equation (3) is in quite good 
agreement with experimental results [l] , although additional effects can 
occur with spills on natural surfaces, e.g., percolation into loose material and 
ice formation in soil water. 

However, the main problem in using eqn. (3) in practice is that it initially 
gives an infinitely large evaporation rate. In the past this has been remedied 
in various ways, such as, for example, prescribing an initial flash-off of a fix- 
ed part of the released material and then using eqn. (3) only after an arbitrary 
time lapse, typically of a few seconds. 

In this paper we propose a more rational procedure based on a consider- 
ation of the finite time in which the liquid spreads from its source to the 
final pool size. 

2. The initial evaporation phase 

To estimate realistically the rate of evaporation from a cryogenic spill, we 
must realise that the area of the pool increases as a function of time, and 
that the area is zero at zero time. 

To get the average evaporation rate for the entire pool at time t, it is 
necessary (as an approximation) to consider Q for each differential area ele- 
ment dA which became covered with fluid during time t’ + dt, and then sum 
to the desired time t. In other words, we must account for the “boiling time” 
of each elemental area. Thus, for the first differential time period 
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where dA1 is the ground area which became covered by the pool during time 
dt. In the next differential period the evaporation becomes 

where the rate of evaporation from the first element now has decreased by a 
factor of fl In general, 

which gives the evaporation rate from the pool at time t = n dt. 
The use of eqn. (2), which is a solution to a one-dimensional problem, in 

connection with the differential elements in eqn. (4) needs to be justified. 
Although horizontal temperature gradients are present in the ground, they 
are small compared to aT/&z, except for a narrow zone of width x close to 
the spreading pool front. The extent of this zone can be estimated from 
a T/ax - AT/x 4 aT/az. Using eqn. (2), this condition is equivalent to 

J UX 

5- 
9 1, (7) 

where t has been replaced by x/u, u being the velocity of the advancing pool 
front, and the diffusivity D = A/PC. With D typically 10m6 m2 s-’ (see values 
given above) and a very low estimate of u of -0.1 m s-l (more typically 1 m 
s-l or larger), the maximum width in which a T/ax is not much less than 
a T/b is - 1 cm, an insignificant value compared to pool diameters of meters. 

Before the sum in eqn. (6) can be evaluated, we must assume a model for 
the area of the pool as a function of time. As an example, we choose the case 
of a continuous point source under calm conditions. The radius of the en- 
suing pool is given by [2] 

r = gV ‘I4 t3/4 

( 1 2n ’ 
(8) 

where g is acceleration due to gravity and 0 is the release rate of fluid. The 
size of the elemental area is dA, = 27~ dr and, using r given by eqn. (8) at 
time t = n dt, dA, becomes 

c&l =$ (2ng@'2 @dt. 

Insertion of eqn. (9) into eqn. (6) gives 

(9) 

where we, for convenience, have introduced the constant C =$ (2nge)1’2. 
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The sum S, in eqn. (10) may be estimated by integration. Thus 

resulting in 

[ 

1 
S, = tan-’ fi-- tan-‘- 

4-( 1 n + 1). 
n 

(11) 

(12) 

For large n (n % 1) S, equals (n/2 - O)n, so that eqn. (10) becomes 

Q,, =sC;t. (13) 

This shows the interesting effect that, for the case of a continuous spill, the 
evaporation rate does not begin as infinitely large, but, in fact, is proportional 
to the time. 

A result analogous to eqn. (13) can be obtained from a simple scale anal- 
sis. From eqns. (3) and (8) 

4 
_ t-112 

t 
, 

r N p 
(14) 

which gives Q(t) - dq - t312 t-‘j2 = t. In such a consideration the proper 
value of the proportionality between Q and t cannot be given. Thus, in the 
latter crude analysis, the factor s&/2 is underestimated by a factor 44$3n 
z 0.6. 

3. The maximum evaporation rate 

If the expansion of the pool is limited by a dyke (circular, concentric), 
the time development as given by eqn. (13) stops when at time td the diam- 
eter of the pool becomes equal to the dyke diameter. After this time the 
evaporation rate begins to decline as a consequence of the progressive cool- 
ing of the substrate, a development which will approximately follow eqn. (3). 
The evaporation rate for this release case is shown as a function of time in 
Fig. 1. The maximum evaporation rate is calculated from eqn. (13), with t 
computed from eqn. (8), in which r is the radius of the circular dyke. 

If the spreading of the pool is not limited by a dyke, we can make the 
following qualitative consideration: when the rate of evaporation, which is 
increasing linearly with time, has become so large that Q - pL%‘, i.e., that the 
rate of evaporation equals the source strength, the size of the pool itself is 
limited. This leads to 

pL3/4 +/s 

r= 

P s314 
(15) 
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Fig. 1. The rate of evaporation as a function of time for a pool resulting from a continuous 
release of cryogenic liquid. The point td cOITe6pOnd6 to the time when the pool has reach- 
ed its maximum area. 

as an estimate of the maximum extent of an unconfined pool resulting from a 
continuous release. The corresponding estimate of the maximum evaporation 
rate is obtained from eqn. (13) with t = td calculated from eqns. (8) and (15). 

Another typical release configuration in accident scenarios is the instanta- 
neous release of a certain volume V. The gravity spreading in this case is such 
that [3] 

r g (gV)1’4 t”*. (16) 

Bypassing the mathematics of section 2 and going directly to a scale analy- 
sis leads to an evaporation rate Q(t) - nr*q - t t-l’* = tl’*, or with the 
physical constants included, 

Q(t) = mst”* . (17) 

Compared to eqn. (13), this expression gives a somewhat slower increase 
with time of the evaporation rate. Again the presence of a boundary or dyke 
leads to a straightforward estimate of the maximum evaporation rate. If the 
spreading is not limited, a qualitative argument leading to a limit can be posed 
as 

Qtd - PLV, (18) 

which simply equals the total released mass with an estimate of the total 
evaporation up to time td . This leads to the following estimate of td : 

td = 
PL2’3 v3 
gl/3s213 ’ (19) 
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with a corresponding maximum radius of spread equal to 

PL .- 
l/3 v5/12 

g 
l/12 

r= 
&3 (20) 

An estimate of the corresponding maximum evaporation rate is again readily 
obtained using eqn. (17) with t = td from eqn. (19). 

Expressions similar to eqns. (19) and (20) can be obtained from reworking 
eqns. (28) and (29) of Ref. [4] (note the difference in notation), which were 
derived in an entirely different manner. 

4. Conclusions 

In this paper we demonstrate that the expected variation with time of the 
rate of evaporation from spills (continuous or instantaneous) of cryogenic 
liquids is a smooth function which starts from zero at t = 0, reaches a maxi- 
mum at a characteristic time td , and then follows the classical t-l’* relation- 
ship, 

For pools spreading unbounded, there are differences between a continuous 
and an instantaneous release regarding the dependence of the maximum 
radius on the various physical parameters of the problem. A comparison of 
eqns. (15) and (20) shows that r for an instantaneous release is much less 
dependent on s, (that is, on the thermal properties of the substrate and the 
temperature and latent heat of vaporization of the liquid) than for a con- 
tinuous release. The dependence on the liquid density is also less for an 
instantaneous release. 

List of symbols 

A 

i 
L 

Q 
Q 
r 
S 

t 

td 
T 
AT 

v 
V 

area of pool [m2] 
specific heat capacity of the ground [J kg-’ K-l] 
= $(2flgV)1/2 [m2 s-3/21 

latent heat of evaporation [J kg-‘] 
rate of evaporation kg s-l m-‘1 
rate of evaporation from entire pool [kg s-l] 
radius of pool [m] 
= (AT/L) ~/m &g mW2 ~~~‘~1 
time [s] 
timescale for pool development [s] 
soil temperature [K] 
initial difference between ground temperature and temperature of 
cryogenic liquid [K] 
instantaneous release volume [m3] 
continuous release rate of fluid [m3 s-l] 



163 

A thermal conductivity of the ground yW m-l K-l] 
P density of ground material kg mm31 
pL density of cryogenic liquid [kg m-“1 

Other symbols are defined as they are encountered in the text. 
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